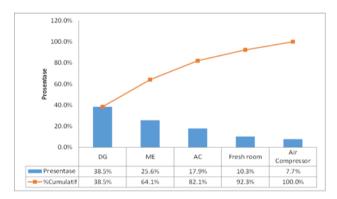
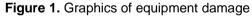
FTA AND FMECA ANALYSIS FOR DETERMINE CRITICAL COMPONENTS OF DIESEL GENERATOR CUMMINS KTA 38D

Wakijo¹, Joko Purnomo², Rakhmad Susilo³

^{1,2,3}Indonesian Naval Technology College, Bumimoro-Morokrembangan, Surabaya 60187, Indonesia Email: joenavy53@gmail.com

ABSTRACT


A diesel Generator is equipment has functions as a power generator and electricity supply. Tanker warship is one of the navy warships applying diesel generator Cummins KTA 38D for electricity supply when going on mission area or at basecamp. On diesel generator system consists of 7 (seven) sub-system are coolant sub-system, seawater cooling sub-system, fuel oil sub-system, air intake and exhaust sub-system, Lub oil sub-system, Electric starter sub-system and controlling sub-system. Due high operating hours, the potential for damage is increasing, because damage a component diesel generator. According ship damage report data, the percentage damage of diesel generator reach until 38.5% from total equipment damage that occurred during 2016-2022 year. Based on that phenomena, this research will identification factors that cause damage and determine the components have high criticality in the diesel generator using the FTA (Fault Tree Analysis) to systematically explain unexpected causal factors that lead to failure, and the FMECA (Failure Mode Effect And Criticality Analysis) method to identify critical components according factors have the highest critical point with calculation of the Risk Priority Number (RPN). The results of calculations and analysis using the FTA and FMECA methods, there are 6 (six) critical components with the highest RPN value in the diesel generator system, that Tube sea water component (375.4) with the risk of leaking, Impeller components (377,1) with a risk of corrosion/crack, Body Cover SW (372,0) with a risk of corrosion. Mechanical Seals (369.8) with a risk of leaking/damage, strainer (369,1) component with a risk of corrosion, Rectangular seal HE (367,9) a risk leakage and Battery (371,0) with a risk no power electric for start engine.


Keywords: Diesel generator, FTA, FMECA, Critical components

1. INTRODUCTION

A tanker type of warship is designed for fuel distribution and liquid logistics supplies at sea (fleet on replenishment at sea). To support the vital role carried out by the ship, the readiness of the ship's technical condition is an absolute requirement that must be properly maintained. One of the pieces of equipment that have a vital role on the ship is a diesel generator. Due to the high age and operating hours of the diesel generator, the potential for damage will increase. Damage to diesel generators caused by the damage of a component cannot be known with certainty because each component has different reliability and rate of damage.

According to ship damage report data, the percentage of damage for Cummins KTA 38D diesel generator is highest reached at 38.5% of total equipment damage that occurred during 2016 – 2022. The graphic of equipment damage shown in figure 1.

There were several weaknesses in the maintenance of the diesel generator system carried out by ship personnel, these weaknesses is:

a. Incomplete equipment manual handbook.

b. Spare parts and tools maintenance equipment not available.

c. Lack of understanding of maintenance by operators,

d. Operators are still having trouble finding the root cause of equipment damage,

1

e. The equipment operated continuously until breakdown occurs.

Based on these references, the purpose of this study is identify critical components based on the factors have the highest critical point on the diesel generator. So that it is expected to provide a solution for equipment maintenance along with the maintenance mechanism has been implemented until now.

2. MATERIAL AND METHODE

2.1 Diesel Genartor

The diesel generator is a ship's equipment useful for supply electricity needs of the ship. Diesel generator is a combination of diesel engine and generator. A diesel engine is a combustion engine with a combustion process that occurs within the engine itself (internal combustion engine) and combustion occurs because pure air is compressed (compressed) in a combustion chamber (cylinder) so that high pressure air and high heat are obtained, along with being sprayed. the fuel is atomized so that combustion occurs.

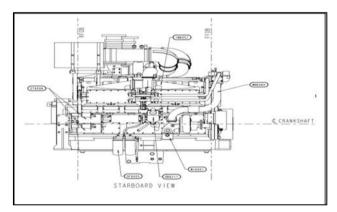


Figure 2. Engine Cummins KTA 38D

Specification engine data of the diesel generator Cummins KTA 38D can be seen in the description below:

Diesel		Gener	ator
Merk	: CUMMIN	Merk	: STAMFORD
Engine No	: 41183836	Туре	: LVM634G1
Model	: KTA38-D(M)	AVR	: MX321
SO No	: S060179	Volt	: 400

Advert	: 880 kw	Phase	: 3
Max.	: 970kw	KVA	: 1100
Idle speed	: 650~750	Rpm	: 1500
Rpm	: 1500r/min	Ampe	re : 1587.8
Produck	: 2013	Freq	: 50Hz
Manufactu Cummins	ıre : Chongqing China	ID No	: X13A021703

2.2 Raliability Diagram Block

Evaluate for reliability of a component or system, the first is make model the component or system into a reliability block diagram. The composition of the reliability block diagram of the system consists of structural forms, namely:

a. Series Structure

Series structure is a system structure where the system is said to be damaged if one of its components is damaged.

$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ $	$-\cdots \rightarrow \boxed{n} \xrightarrow{\text{Out}}$
--	--

Figure 3. Series structure

b. Parallel structure

Parallel structure is a system structure where the system still functioning if at least one component functioning or it can be said that the system is damaged if all components are damaged.

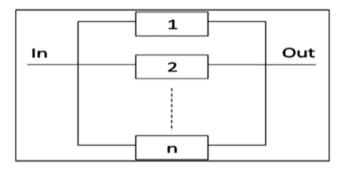


Figure 4. Parallel structure

2.3 Fault Tree Analysis (FTA)

Fault Tree Analysis (FTA) is a method of deductive analysis by describing numerical graphs and analyzing how damage can occur and what are the chances of damage (Blanchard, 2004). The FTA

steps in a system are as follows:

a. Identify the most important events in the system (top level events).

b. Create a fault tree (fault tree).

c. Analyze the fault tree (fault tree)

The symbols used in fault tree analysis are as follows:

Tabel 1. Symbol of Fault Tree Analysis	Tabel 1	. Symbol	of Fault	Tree	Analysis
--	---------	----------	----------	------	----------

Basic Event Intermediate Fault Event Undeveloped Event
Undeveloped Event
· · · · · · · · · · · · · · · · · · ·
External Event
Top Event
Logic event End gate
Logic event Or gate
Exclusife Event

2.4 Failure Mode Effects and Criticality Analysis (FMECA)

FMECA is a development of FMEA by considering the level of criticality associated with the impact of the component failure mode. This criticality level is analyzed based on a combination severity and probability of occurrence The analysis may be performed according to the following scheme.

a. Definition and delimitation of the system (which components are within the boundaries of the system and which are outside).

b. Definition of the main functions (missions) of the system.

c. Description of the operational modes of the system.

d. System breakdown into subsystems that can be handled effectively.

e. Review of system functional diagrams and drawings to determine interrelation- ships between the various subsystems. These interrelations may be illustrated by drawing functional block diagrams

where each block corresponds to a sub-system.

f. Preparation of a complete component list for each subsystem.

g. Description of the operational and environmental stresses that may affect the system and its operation. These are reviewed to determine the adverse effects that they could generate on the system and its components.

The Risk Priority Number (RPN) is the result of multiplying the weights of Severity, Occurance and Detection rating. These results will be able to determine the critical components of the system under study.

RPN = Severity(S) x Occurance(O)x Detection(D)

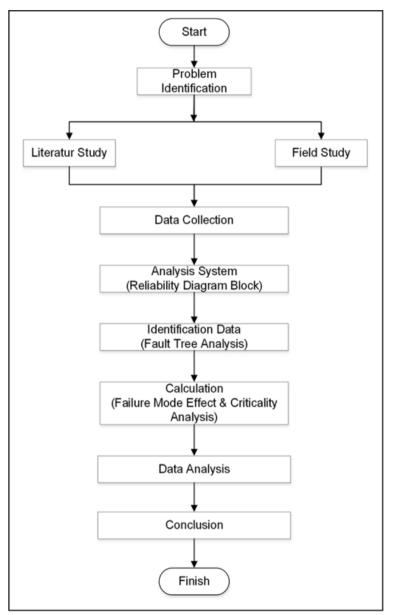
The Risk Priority Number is used to rank and identify failures or risks associated with operations due to design

Rating	Description	
High	The team must either identify an appropriate action to improve prevention.	
Medium	The team should identify appropriate actions to improve prevention and / or detection controls,	
Low	The team could identify actions to improve prevention or detection controls	

Component criticality analysis based on failure mode/failure mode using a risk matrix according predetermined criteria. The final results obtained are items that are included in the critical components, namely components that are included in the "high" rating of risk based on the risk matrix. The overall results of the analysis of the FMECA method will be presented in the form of an FMECA Worksheet.

Tabel 3. Severity Level.

Severity Level		
Kategori	Ranki ng	Definition
Catastroph ic	8,1-10	Cause system shutdown.
Critical	6,1-8	The system cannot function as specified.


Marginal	4,1-6	The system has decreased function performance.
Negligible	2,1-4	The system can function with little risk.
Minor	1-2	The system can function with negligible risk.

Tabel 4. Occurrence Level.				
Occurrence Level				
Frekuensi Kejadian	Occurrenc e Rating	Definition		
Frequent	8,1-10	Often occur		
Probable	7,1-8	Very likely		

Occasional	5,1-7	Commonly
		occurs
Remote	3,1-5	Rarely occurs
Improbable	1-3	Impossible to
		happen

2.4 Research Metodhology

In order to facilitate understanding achieve expected goals in the research process, a research design made which represented in a research flow chart

Figure 5. Flow Chart Diagram

3. RESULTS AND DISCUSSION

Based on direct observation, guidance from the Cummins KTA 38D engine manual book and

interviews with respondents and experts, there are 7 (seven) systems that support the operation of diesel generators arranged in the series structure

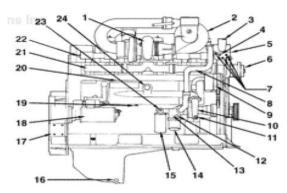


Figure 8. Layout of diesel generator

Generality of the supporting components of a diesel generator are as follows:

rubie o. compo	
1. High pressure	13. Water Pump inlet
Turbocahrger	housing
2. Low pressure	14. Water inlet
Turbocahrger	connection
3. Water outlet	15. Coolant Filter
4. Water Press. Pickup	16. Oil Drain
5. Thermostat housing	17. Flywheel housing
6. Gear Driven	18. Starter
7. Water press/temp	19. Petcock for water
	drain
8. Water bypass tube	20. oil cooler
9. Alternator	21. Exhaust manifold
10. Water pump	22. Heater supply
11. Petcock for water drain	23. Water shutoff valve
12. Heater retuen port	24. Coolant Heater

Table 5. Components of Diesel

Acccording to the block diagram of diesel generator system has a

series structure, where the system is said to be damaged if one of its components is damaged and the system is said to be good if all components are in good condition.

Figure 9. Block Diagram of Diesel Generator

3.1 Fault Tree Analysis of Diesel Generator

In the FTA method, the failure of the diesel generator is a top event, the diesel generator operational support systems are developed into a fault tree to find the factors that cause the diesel generator to fail. Factor analysis diesel generator failure can be caused by one of the existing systems. The relationship/logic event of the diesel generator failure factors is to use an OR gate. This shows that the failure of the diesel generator can be caused by one of the factor cause diesel generator failure factors. For detail of factor cause diesel generator fail on figure 10.

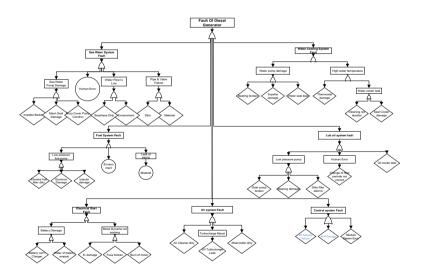


Figure 10. Fault Tree Diagram of Diesel Generator

3.2 FMECA of Diesel Generator

The diagram in figure 3.1 shows which components are the cause of the sub-system on the diesel generator that affects engine performance. To find out the failure in detail using the Failure Mode Effect and Citical analysis which is applied to the diesel genartor system. The diesel generator system is divided into 7 (seven) sub-systems, namely fresh water sub-system, seawater sub-system, air subsystem, fuel sub-system, lubricant sub-system, electric start sub-system and control sub-system.

a. Sea water sub-system, function each component are of tube coole for heat absorber coolant, impeller for make faster in and out fluid, gasket pump for body casing insulator, Casing cover for protective rotary component pump, Mechanical seal for obratction fluid leakage, strainer for filtering sea water waste, shaft SW pump for pass on rotary moment from driver, and bearing SW pump for keep friction between shaft rotary and body casing.

b. Coolant water sub-system, function each component are, bearing for keep friction between shaft rotary and body casing, seal oil and water for prohibit oil and water get involved, thermostate for keep stability water temperature, rectanguler seal HE for obstauction fluid leakage, and heat excahanger tube for heat absorber coolant.

c. Fuel oil sub-system, function each component are, element fuel filter for filtering fuel sludge, main shaft fuel pump for pass on rotary moment from driver, o-seal drive shaft and seal wire for obstuction fuel leakage, and injector for fuel spraying to combution chamber.

d. Lub oil sub-system, function each component are bushing oil pump for vibration muffle, element oil filter for filtering oil sludge, and seal oil heat exchanger for leakage oil inhibitor.

e. Air intake and exhaust Sub-system, funtion each component are air cleaner for filtering air waste, aftercooler for absorb heat of air intake, seal rectanguler ring for air leakage inhibitor and bushing turbocharger for vibration muffle and oil leak inhibitor f. Elelctricaly starter sub-system, function each

component are, battery for electric power storage,

and modul starter for regulating starting engine process

g. Control sub-system, function ecah component are, AVR for electrically controlling fuel and Engine oil sensor for read oil temperature.

For detail cause and effect each component in the sub system diesel generator show on FMECA worksheet tabel 7.

The FMECA process included components failure mode, failure cause, effects of the failure on the transformer/network and recommendations were formulated to curb future failure. The criticality analysis of each failure mode was performed by assigning to each failure mode a Risk Priority Numbers (RPN), and the results of the entire FMECA process is represented in table 7. Table 7, summarizes the failure modes of diesel geneator components each sub system, failure causes, effects of component failure of the diesel genator units or the entire grid and the Risk Priority Numbers based on how severe the effects of a failure are, how frequent a fault occurs and how easy is it to detect the failure before it occurs. Risk Priority Numbers assignments to failure modes are referred to as criticality analysis and specify the critical nature of each component failure. Sample calculation RPN on Tube cooler sea water is ; **RPN = S** (8) x O (8) x D (6) = 375

The highest RPN shows the components on which much attention should be tilted. From table 7, any seven component have the highest RPN values their are impeller, tube cooler sea water, casing cover, battery accu, mechanical seal, strainer and seal rectanguler heat excahanger.

No	Item	Function	Failure Mode	Failure Causes	Failure Effect	Detection Method
W1	Tube Cooler Sea Water	Heat absorber coolant	Mechanical	Tube cooler corrosion	Coolant and sea water mixed	Visual inspection
W2	Impeller	Make Faster in/Out fluid from pump	Mechanical	Impeller corrosion and crack	Suction and press pump can"t work perfection	No detection equipment

Tabel 7. Causes and Effect failure worksheet

No	ltem	Function	Failure Mode	Failure Causes	Failure Effect	Detection Method
W3	Gasket pump	Body casing insulator	Mechanical, thermal	Gasket damage	Permeate water from pump	Visual inspection
W4	Casing Cover	Protective rotary componen pump	Material, Mechanical	Material corrosion	Pump can't vaccum	Visual inspection
W5	Mechanical Seal	Obstruction fluid leakage	Mechanical	Mech.Seal damage	Pump suction not perfection	Visual inspection
W6	Strainer	Filtering sea water waste	Mechanical, material	Material corrosion	Sludge go into cooling water	Visual inspection
W7	Shaft SW Pump	Pass on rotary moment from driver	Mechanical	Wear out and corrosion of shaft	impeller not balance occure of vibration	No detection equipment
W8	Bearing SW pump	Fiction keeping between shaft rotary and body casing	Mechanical	Bearing broken and worn out	Pump suction not perfection	No detection equipment
W9	Bearing Coolant Pump	Fiction keeping between shaft rotary and body casing	Mechanical	Bearing broken and worn out	Pump suction not perfection	No detection equipment
W10	Seal Water Coolant Pump	Prohibit oil and water get involved	Mechanical, thermal	Solidify of seal or damage	less of pump suction	Visual inspection
W11	Seal oil Coolant Pump	Prohibit oil and water get involved	Mechanical, thermal	Solidify of seal or damage	Pump suction not perfection	Visual inspection
W12	Thermostat	Keep Stability water temperature	Mechanical, thermal	Termostate can"t work	Coolant temperature Overheating	Visual inspection
W13	Rectanguler Seal HE	Obstruction fluid leakage	Mechanical, thermal	Solidify of seal or damage	Leakage coolant	Visual inspection
W14	Heat Exchanger Tube	Heat absorber coolant	Mechanical, thermal	Tube HE corrosion	Coolant and sea water mixed	Visual inspection
W15	Element Fuel Filter	Filtering Fuel Sludge	Mechanical	Element filter clogged	Less of fuel pressure	Pressure sensor
W16	Main Shaft Fuel Pump	Pass on rotary moment from driver	Mechanical	Shaft worn out	Gear pump can"t rotatri occure vibration	No detection equipment
W17	O-Seal Drive Shaft	Obstruction fuel leakage	Mechanical, thermal	Solidify of seal or damage	Pump suction not perfection	Visual inspection
W18	Seal Wire	Obstruction fuel leakage	Mechanical, thermal	Solidify of seal or damage	Pump suction not perfection	Visual inspection
W19	Injector	Fuel spraying to chamber	Mechanical	Injector Shim worn out	High of exhaust temperatur	Visual inspection
W20	Bushing Oil pump	Vibration muffle	Mechanical	Bushing worn out	Crude noise and oil leak	No detection equipment
W21	Element oil Filter	Filtering oil Sludge	Mechanical	Element filter clogged	Less of oil pressure	Pressure sensor
W22	Seal oil Heat Exchanger	Leakage oil inhibitor	Mechanical, thermal	Solidify of seal or damage	Oil Leakage	Visual inspection
W23	Battery Accu	Electric Power Storage	Mechanical, thermal, Electrical	Less of accu water or element damage	No electrik power to starting engin	Voltage indicator
W24	Gear pinion motor	Pass on rotary power of starter	Mechanical	Knocked gear or fault	Flywheel can <t td="" turning<=""><td>No detection equipment</td></t>	No detection equipment
W25	Air Cleaner	Filtering air waste	Mechanical	Element filter clogged	Decreasing volume of air	Pressure sensor
W26	Aftercooler	Absorb heat of air intake	Mechanical, thermal	Aftercooler corrosion	Air intake temperatur high	Visual inspection
W27	Seal Rectanguler ring	Air Leakage inhibitor	Mechanical, thermal	Solidify of seal or damage	Air leakage	Visual inspection

No	Item	Function	Failure Mode	Failure Causes	Failure Effect	Detection Method
W28	Bushing TC	Vibration muffle and oil leakage inhibitor	Mechanical	Bhusing worn out	Crude noise and oil leak	No detection equipment
W29	AVR	Electricaly Controlling fuel	Thermal, Electrical	Short Circuit	Engine rotation unstable	Rpm engine Indicator
W30	Engine oil sensor Temperatur	Read oil temperature	Thermal, Electrical	Short Circuit	Engine can"t start	Alarm sensor
W31	Modul Starter	Regulating starting engine process	Thermal, Electrical	Short Circuit	Engine can"t start	Alarm monitoring

Tabel 8. RPN value of components

No	Item	Severity (S)	Occurrence (O)	Detection (D)	RPN
W1	Tube Cooler Sea Water	7.8	7.8	6.3	375.4
W2	Impeller	8.1	6.8	6.9	377.1
W3	Gasket pump	3.9	7.1	3.8	103.5
W4	Casing Cover	7.5	8.6	5.8	372.0
W5	Mechanical Seal	7.3	8.0	6.4	369.8
W6	Strainer	6.8	8.8	6.3	369.1
W7	Shaft SW Pump	7.9	2.1	5.6	94.1
W8	Bearing SW pump	3.8	4.5	3.8	63.3
W9	Bearing Coolant Pump	5.3	4.1	4.3	92.0
W10	Seal Water Coolant Pump	4.0	7.8	6.3	45.1
W11	Seal oil Coolant Pump	6.9	6.8	6.9	95.7
W12	Thermostat	5.3	2.4	4.8	67.3
W13	Rectanguler Seal HE	7.9	3.4	4.1	367.9
W14	Heat Exchanger Tube	7.9	2.5	5.1	103.4
W15	Element Fuel Filter	6.4	8.1	5.8	94.8
W16	Main Shaft Fuel Pump	7.9	2.5	5.3	98.4
W17	O-Seal Drive Shaft	3.3	7.0	2.1	76.0
W18	Seal Wire	4.0	2.5	5.0	97.5
W19	Injector	7.5	4.3	5.5	88.6
W20	Bushing Oil pump	7.8	4.9	5.0	80.4
W21	Element oil Filter	8.1	3.4	3.5	99.9
W22	Seal oil Heat Exchanger	7.0	2.5	6.1	101.5
W23	Battery Accu	7.9	7.3	2.3	371.0
W24	Gear pinion motor	7.3	4.0	3.6	73.4
W25	Air Cleaner	3.3	8.4	5.6	51.8
W26	Aftercooler	3.6	3.0	3.4	21.4
W27	Seal Rectanguler ring	3.5	6.4	2.5	82.7
W28	Bushing TC	8.1	2.3	2.6	75.2
W29	AVR	8.0	3.5	6.8	36.8
W30	Engine oil sensor Temperatur	3.6	2.0	4.6	15.0
W31	Modul Starter	7.8	2.6	1.8	38.8
		RPN Value : 36	6,6		

Tabel 9. Risk Matriks Component

No	ltem	Conse	Risk	
	item	Severity	Occurrence	Level
W1	Tube Cooler Sea Water	Critical	Probable	High
W2	Impeller	Catastrophic	Probable	High
W3	Water Seal	Negligible	Probable	Medium
W4	Casing Cover	Critical	Frequent	High
W5	Mechanical Seal	Critical	Probable	High
W6	Strainer	Critical	Frequent	High
W7	Shaft SW Pump	Critical	Improbable	Low
W8	Bearing SW Pump	Negligible	Remote	Medium
W9	Bearing Coolant Pump	Marginal	Remote	Medium
W10	Seal Water Coolant Pump	Negligible	Improbable	Low
W11	Seal oil Coolant Pump	Critical	Remote	Medium
W12	Thermostat	Marginal	Improbable	Low

No	ltem	Conse	quency	Risk	
NO	item	Severity	Occurrence	Level	
W13	Rectanguler Seal HE	Critical	Frequent	High	
W14	Heat Exchanger Tube	Critical	Improbable	Low	
W15	Element Fuel Filter	Critical	Occasional	Medium	
W16	Main Shaft Fuel Pump	Critical	Improbable	Low	
W17	O-Seal Drive Shaft	Negligible	Remote	Medium	
W18	Seal Wire	Negligible	Remote	Medium	
W19	Injector	Critical	Remote	Medium	
W20	Bushing Oil pump	Marginal	Improbable	Low	
W21	Element oil Filter	Marginal	Probable	Medium	
W22	Seal oil Heat Exchanger	Critical	Remote	Low	
W23	Battery Accu	Critical	Frequent	High	
W24	Gear pinion motor	Critical	Remote	Medium	
W25	Air Cleaner	Negligible	Occasional	Medium	
W26	Aftercooler	Negligible	Improbable	Low	
W27	Seal Rectanguler ring	Negligible	Remote	Medium	
W28	Bushing TC	Catastrophic	Improbable	Low	
W29	AVR	Critical	Improbable	Low	
W30	Engine oil sensor Temperatur	Negligible	Improbable	Low	
W31	Modul Starter	Critical	Improbable	Low	

Tabel 10. Risk matriks mapping

Frequent				4,13,23	
Probable		3	21	1,5,6	2
Occasional		25		15	
Remote		8,14,17,18,27	9	11,19,22,24	
Improbable		10,26,30	12,20	7,14,16,29,31	28
	Minor	Negligible	Marginal	Critical	Catastrophic

Tabel 11. Critical Components

No	ltem	Function	Failure Mode	Failure Causes	Failure Effect	Risk Level	RPN
W1	Tube Cooler Sea Water	Heat absorber coolant	Mechanical	Tube cooler corrosion	Coolant and sea water mixed	High	375,4
W2	Impeller	Make Faster in/0ut fluid from pump	Mechanical	Impeller corrosion and crack	Suction and press pump can"t work perfection	High	377,1
W4	Casing Cover	Protective rotary componen pump	Material, Mechanical	Material corrosion	Pump suction not perfection	High	372,0
W5	Mechanical Seal	Obstruction fluid leakage	Mechanical	Mech.Seal damage	Pump suction not perfection	High	369,8
W6	Strainer	Filtering sea water waste	Mechanical, material	Material corrosion	Sludge go into cooling water	High	369,1
W13	Rectanguler Seal HE	Obstruction fluid leakage	Mechanical, thermal	Solidify of seal or damage	Leakage coolant	High	367,9
W23	Battery Accu	Electric Power Storage	Mechanical, thermal, Electrical	Less of accu water or element damage	No electrik power to starting engin	High	371,0

RPN calculations and risk mapping for critical components of diesel generators have the effect of engine running is shutdown, which has an RPN value above the average and has a risk with a "High" rating.

So that the components can be categorized as critical components of diesel generators.

4. CONCLUSION

System of Diesel generator Cummins KTA 38D have 7 (sevent) sub-systems that support the operation of diesel generators arranged in series structure. Fault tree to find the factors that cause the diesel generator to fail. Factor analysis diesel generator failure can be caused by one of the existing systems.

RPN calculations and risk mapping for critical components of diesel generators have the effect of engine running is shutdown, which has an RPN value above the average and has a risk with a "High" rating. The critical components are, tube cooler seawater (375,4) with failure causes tube cooler corrosion and failure effect is coolant mixed with seawater, impeller (377,1) with failure causes corrosion/crack and failure effect is suction and pressure can't work, casing cover (372,0) failure causes material corrosion failure effect pump suction not perfection, battery accu (371,0) failure causes is less of water battery failure effect no electric power, mechanical seal (369,8) failure causes damage failure effect pump suction no perfection, strainer (369,1) failure causes carrion failure effect sludge to go into cooling water and seal rectangular heat exchanger (367,9) failure causes solidify or damage failure effect is coolant leakage.

ACKNOWLEDGEMENT

The author is very grateful for the support of the Indonesian navy, and also thanks to the STTAL Surabaya Indonesia Naval College of Technology for providing the necessary resources to carry out this research work. The authors also thank anonymous reviewers and the editorial board for their many insightful comments, which have enhanced this article significantly.

REFERENCES

- Alkaff, A. (1992). Reliability Technique System. Surabaya: Electronic engineering faculty, industrial engineering faculty, ITS.
- ARMY, D. o. (2006). Failure Modes, Effect and Criticality Analysis (FMECA) For Command,

Control, Communication, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) Facilities. Washington D.C

- B. J Camerling, D. B. (2020). The Effect of Crank System Maintenance Management on the Operation of the Belgian Type 12 V . Anglo Engine. Arika, 1-15.
- Blanchard, B. (2004). Logistics Engineering And Management (6th Edition. Virginia: Pearson Education International.
- Ebeling, C. E. (1997). An Introduction to Reliability and Maintainability. Singapore: Me Graw Hill Book Co.
- Govil, A. K. (1983). Reliability engineering. New Delhi: Tata McGraw-Hill..
- Jardine, A. K., & Tsang, A. H. (2013). Maintenance, Replacement and Reliability. France: CRC Taylor & France Group.
- Milje, R. (2011). Engineering methodology for selecting Condition Based . New York: University Of Stavanger.
- O'Connor, &. P. (2002). Patrical Reliability Engineering ((Fourth Edition). John Wiley and Sons.
- Patrick D.T. O'Connor, A. K. (2012). Practical Reliability Engineering Fifth Edition. West Sussex, United Kingdom: John Wiley & Son, Ltd.
- Rausand, M. (2004). System Reliability Theory Models, Stastical Methods and Applications. France: Departemen Productique et Autamatique Nantes Cedex 3.
- Samlawi, & Kusairi, A. (2015). Diesel Engine Basic Engineering, Lambung Mangkurat University.
- Wang, Y.-M., Poon, K.-S., Gary ka Kwai, & Jian Bo, Y.
 (2009). Risk Evaluation in Failure Mode anf Effect
 Analysis Using Fuzzy Weighted Gemetric Mean.
 Expert Systems With Applications, 1195-1207.
- Zafiropoulos, E., & Dialynas, E. (2005). Reliability Prediction anf Failure Mode Effecs and Criticaly Analysis of Electric Device Using Fuzzy Logic. Internatinal Journal Of Quality & Reliability Management, 183-200.